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Abstract: Frequent pattern mining is an important problem in the data mining area. Frequent pattern mining has been a focused theme in 
data mining research for over a decade. Frequent pattern mining often produces an enormous number of frequent patterns, which imposes 
a great challenge on visualizing, understanding and further analysis of the generated patterns. Finding a small number of representative 
patterns to best approximate all other patterns becomes an important task. This paper gives a relative study on different techniques that 
can be used in order to find minimum number of representative pattern sets where closed sets play an important role. 

 
           Index Terms— Closed pattern set,  Data mining, Delta free sets,  Disjunction  free sets, Free sets,  Frequent Pattern mining. 

 ———————————————————

1. Introduction: 
Data mining is the process of discovering interesting and 
useful patterns and relationships in large volumes of 
data. Frequent pattern mining is an important problem in the 
data mining area. It was first introduced by Agrawal et al. in 
1993. It has been observed that a lot of redundancy can appear 
in the complete set of frequent patterns , as any frequent 
patterns have similar items and supporting transactions. It is 
desirable to group similar patterns together and represent 
them using one single pattern. 
 
2. Literature Survey: 
A)  Closed Sets 
The application of this theory to frequent itemset mining has 
been proposed independently by Pasquier et al. and by Zaki 
and Ogihara . In this context, an itemset I is said to be closed in 
D if and only if no proper superset of I has the same support 
than I in D. The closure of an itemset I in D, denoted cl(I), is the 
unique maximal superset of I having the same support than I 
and a closed itemset is equal to its closure. An alternative 
definition is to consider the equivalence classes of the itemsets 
appearing in the same sets of transactions, i.e., the equivalence 
classes of the relation has the same closure. Closed itemsets are 
the unique maximal elements of each equivalence class . For a 
given support threshold, it is thus sufficient to know the 
collection of all frequent closed itemsets (denoted FreqClosed) 
and their supports, to be able to generate all the frequent 
itemsets and their supports, i.e., F. For example, consider an 
itemset X,  
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 if X has no superset in FreqClosed, this means that cl(X) is not 
frequent, and thus X cannot be frequent. If X has at least one 
superset in FreqClosed, then supp(X) = supp(Y) where Y = cl(X) is 
the smallest superset of X in FreqClosed. Let us consider the 
database containing the following transactions: two 
transactions {a , b}, two transactions {a , b , c ,d} two 
transactions {a , b , c , d , e} and one transaction {a , b , c,  d, e , f } 
(see Table 1). 
                             Items Trans. a b c d e f 

 a b c D e f 
T1 1 1 0 0 0 0 
T2 1 1 0 0 0 0 
T3 1 1 1 1 0 0 
T4 1 1 1 1 0 0 
T5 1 1 1 1 1 0 
T6 1 1 1 1 1 0 
T7 1 1 1 1 1 1 

                            Table 1. A toy database 
 
In such a database, for example, the itemset abc is not closed, 
since it has the same support (i.e., 5 transactions) than abcd, 
one of its proper supersets. The itemset abcd is the maximal 
superset of abc having the same support, and thus is the 
closure of abc. If we choose a support threshold of 2 
transactions, then the frequent closed sets are ab, abcd, abcde 
and their respective supports are 7, 5 and 3. Having only at 
hand these frequent closed sets, to generate the support of abc 
we consider the smallest frequent closed set that is a superset 
of abc. This frequent closed set is abcd and its support (i.e., 5 
transactions) gives us the support of abc.  
 
B) Free Sets The free sets (also termed 𝛿-free sets) have been 
introduced in [12, 13] and are based on the notion of 𝛿 strong 
rule3. Informally, a 𝛿 strong rule is an association rule of the 
form X ⇒a, where X ⊆ I, a ∈ I \ X, and 𝛿 is natural number. 
This rule is valid in a database if supp(X) - supp(X ∪ {a}) ≤ 𝛿, i.e., 
the rule is violated in no more than 𝛿 transactions. Since 𝛿 is 
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supposed to be small w.r.t. |D|, δ-strong rules have a high 
confidence (in particular confidence 1 when 𝛿 = 0). An itemset 
Y⊆ I is a 𝛿 -free set if and only if there is no valid 𝛿-strong rule 
X⇒ δ a such that X ⊆ Y , a ∈  Y and where by definition a ∉ X. 
The set of all frequent 𝛿 -free sets, denoted FreqFree δ  ,and their 
supports enables to approximate the support of the frequent 
non- 𝛿 free sets. Let us consider Y a frequent non- 𝛿-free set. 
Then, there exists a valid 𝛿-strong rule X ⇒δ a such that X ⊂ Y 
and a ∈ Y . Moreover, Y \ {a}⇒δ a is also valid. Thus the 
support of Y can be approximated by the support of the 
frequent set Y \{a}. If Y \{a} is a free-set then we have its 
support, if not, it can be in turn approximated by the support 
of a smaller itemset. This recursive process gives an 
approximation of the support of Y. Using this principle, the 
best approximation is the lowest upper bound. Thus, in 
practice, the support of Y is approximated by the minimal 
support value of the frequent δ -free sets that are subsets of Y. 
The error made has been formalized using the framework of 
an ε-adequate representation, and is small on common real 
datasets. 
When δ = 0, the support of all frequent non-δ-free sets can be 
determined exactly. In fact, the 0-free sets corresponds to the 
key patterns (also called generators)  and  used in other works. 
The following property mentioned by several authors 
establishes a direct link between 0-free sets and closed sets: 
any frequent closed sets is the closure of at least one frequent 
0-free sets. As a result, when considering each (frequent) 0-free 
set X, cl(X) is a (frequent) closed set but also X ⇒ cl(X) \ X is 
an association rule  
with confidence 1. In fact, 0-free sets are the minimal elements 
of the already mentioned equivalence classes. Since several 
minimal elements are possible, collections of 0-free sets are 
generally larger than collections of closed sets. In the toy 
example from Table 1, the 2-frequent 0-free sets are Ø, c, d and 
e. Even though the frequent δ-free sets are sufficient to 
approximate the support of all frequent non-δ-free sets (or to 
determine this support exactly when δ = 0), they are not 
sufficient to decide whether an itemset is frequent or not. For 
this purpose, the collection of frequent δ -free sets is completed 
by the collection of minimal infrequent δ -free itemsets, Now, 
given any itemset Y , if there exists Z ⊆ Y , such that Z is a 
minimal infrequent δ -free itemsets, then we know that Y is not 
frequent. In the other case, the support of Y can be 
approximated as described above. There are many algorithm 
proposed on closed itemsets namely. 
i) A-CLOSE: The A-Close(Apriori based closed frequent 
itemset) algorithm is works based on the apriori algorithm 
along with the concept of the closed itemset lattices concept. 
ii) CHARM: stands for Closed Association Rule Mining. The 
algorithm is used to mine the closed frequent patterns. It 
explores patternset and didset(Document idset) space 
simultaneously which skips many levels quickly to identify the 
closed frequent patterns.  
iii) CLOSET: algorithm used to mine the closed frequent 
patterns with the help of three techniques such as compression 

frequent pattern tree structure without candidate generation, 
Single Path compression technique and partition based 
projection mechanism.  
iv) CLOSET+: algorithm is used to mine closed frequent 
pattern. Initially, it scans the database only once to find the 
global frequent patterns and sort the database in support 
descending order and forms the frequent pattern list, scans the 
document and builds the FP-Tree using the pattern list, using 
divide and conquer technique and depth first searching 
paradigm it finds the closed frequent patterns. Finally, stop the 
process until all the patterns in the global header are mined. 
The frequent closed patterns are obtained either from result 
tree or from the output file. 
v) CARPENTER: stands for Closed Pattern Discovery.  
Transposing Tables that are Extremely Long used to mine long 
biological dataset. It consists of two main steps: Transpose the 
data into table and row enumeration tree search. In the First 
step, it transpose the patterns into the table named as 
transpose table, in that each tuple lists the feature along with 
the row ides feature occurs in the original table. In the second 
step, according to the transpose table, construct the row 
enumeration tree which enumerates row ids with predefined 
order and search the tree in depth first order without any 
pruning strategies. 
vi) TD-CLOSE: The algorithm uses the Top-Down strategy 
and closeness checking method to mine the frequent closed 
patterns .Initially, it performs the transposition operation to 
transform original table to the transposed table and initialize 
the frequent closed patterns as an empty set and size of the 
rowset as zero. Finally, the TopDownMine is used to find the 
frequent closed patterns. 
vii) PGMiner: The PGMiner [17, 23] is the Prefix Graph Miner 
which mines the frequent closed patterns. This algorithm 
integrates two methods such as projected database and bit 
vectors. Initially it projecting the document containing into 
nodes of a graph as similar to FP-Tree but different in the cost 
of traversing  
multiple branches of the tree to collect frequency information 
are low compared to the FP-Tree .Then, the projection of the 
nodes are encode into the bit vectors with the shorter length 
compare to the existing approaches. The efficiency of mining 
algorithm is improved by using two phase such as intra node 
itemset mining and inter node pruning mechanism. In the 
intra node itemset mining, it finds the frequent closed patterns 
for each node and form local closed patterns. In the inter node 
pruning mechanism, it checks whether the local closed 
patterns are also globally closed or not and finally obtain the 
frequent closed patterns.  
viii) PTclose: The PTclose  stands for the Patricia Tree used to 
mine the  closed frequent patterns. In this algorithm, it uses the 
PTArray Technique to reduce the scanning of the patricia tree. 
It has two inputs such as Patricia tree and Closed Frequent 
Pattern tree. The Patricia tree is a compact tree, used to 
characterize all relevant frequency information within the 
document, each branch in patricia tree represents a frequent 
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patterns and the nodes along the branches are in frequency 
decreasing order from root through leaves. Initially it verifies 
whether the patricia tree is a single path tree, if so all candidate 
closed Frequent patterns (CFP) are obtained from the patricia 
tree and candidate patterns is then compared with all the CFPs 
within patricia tree. If it is closed patterns it will be inserted 
into patricia and all CFP – tree existing in memory will be 
updated until Frequent closed pattern are obtained. 
 
C) Disjunction-Free Sets 
 Simple Disjunction-Free Sets  
This representation has been proposed in [17, 18] as a 
generalization of 0-free sets. It is based on disjunctive rules of 
the form X ⇒ a ∨ b, where X ⊆ I and a, b ∈ I \ X. Such a rule is 
said to be valid if any transaction containing X contains also a 
or b (maybe both). Thus the support of X is equal to the sum of 
supp(X ∪ {a}) and supp(X ∪ {b}) minus supp(X ∪ {a , b}) since the 
transactions containing X ∪ {a , b} have been counted both in 
supp(X ∪{a}) and supp(X ∪ {b}) . So, we have the relation  
supp(X ∪ {a , b}) = supp(X ∪ {a}) + supp(X ∪ {b}) - supp(X)  and 
the satisfaction of this relation is equivalent to the validity of 
the rule X  ⇒  a ∨ b. Similar to δ -free sets, an itemset Y ⊆ I is a 
disjunction-free set if and only if there is no valid disjunctive 
rule X  ⇒  a ∨ b, such that X⊂Y , a, b∈Y and where by 
definition a ∉ X and b ∉ X. In the following, the collection of 
all frequent disjunction-free sets is denoted FreqDFree. 
Knowing all elements in FreqDFree and their supports is not 
sufficient to determine the support of all frequent itemsets. For 
that purpose the representation can be completed in different 
ways. Intuitively, FreqDFree must be completed with the 
collection of all the valid rules of the form X  ⇒  a ∨ b, where X 
∈ FreqDFree and X ∪ {a , b} is frequent. This can be illustrated 
inductively as follows. Suppose that using FreqDFree (and the 
supports of its elements) and the collection of rules defined 
above, we are able to compute the support of any itemset 
having a size lesser or equal to k. Let us consider a frequent 
itemset Y such that |Y| = k + 1. If Y is disjunction-free then Y ∈ 
FreqDFree and we know its support. If Y is not disjunction-free, 
then there exists a valid rule X  ⇒  a ∨ b such that X ⊂ Y and a, 
b ∈ Y . By definition of a valid rule, Y \{ a , b }  ⇒  a∨b is also 
valid. Hence the relation supp(Y ) = supp(Y \ {b}) + supp(Y \ {a}) 
- supp(Y \ {a , b}) holds. Since Y is frequent, the itemsets Y \{b}, 
Y \{a} and Y \{a , b} are also frequent. Moreover, these three 
sets have a size strictly lesser than k + 1. Thus, by hypothesis, 
we can determine their supports, and then compute supp(Y).  
 
3. Existing System 
This existing system is based on closed pattern set which are 
unique maximal elements of equivalence class. The following 
algorithm gives a brief description of constructing a closed 
frequent pattern tree to mine representative patterns. 
THE MINRPSET Algorithm 
A straightforward algorithm for finding a minimum 
representative pattern set works as follows. First we mine all 
patterns in F^, and then we generate C(X)—the set of frequent 

patterns that X covers—for every pattern X ∈ Fˆ. We get |Fˆ| 
sets. The elements of these sets are frequent patterns in F. Let S 
= {C(X)|X ∈ Fˆ}. Finding a minimum representative pattern set 
is now equivalent to finding a minimum number of sets in S 
that can cover all the frequent patterns in F. This is a set cover 
problem, and it is NP-hard. We use the well-known greedy 
algorithm [5] to solve the problem, which achieves an 
approximation ratio of Ʃki=1 =1/i , where k is the maximal size of 
the sets in S. This  algorithm is called MinRPset. The greedy 
algorithm is essentially the best-possible polynomial time 
approximation algorithm for the set cover problem. Our 
experiment results have shown that it usually takes little time 
to finish. Generating C(X)s is the main bottleneck of the 
MinRPset algorithm when F and Fˆ are large because we need 
to find C(X)s over a large F for a large number of patterns in 
Fˆ. Let F be the set of frequent patterns in a dataset D with 
respect to threshold minsup, and Fˆ be the set of patterns with 
support no less than minsup ・ (1− ϵ) in D. Obviously, F ⊆ Fˆ. 
Given a pattern X ∈ Fˆ, we use C(X) to denote the set of 
frequent patterns that can be ϵ -covered by X. We have C(X) ⊆ 
F. If X is frequent, we have X ∈ C(X). We use the following 
techniques to improve the efficiency of MinRPset: 1) consider 
closed patterns only; 2) use a structure called CFPtree to find 
C(X)s efficiently and 3) use a light-weight compression 
technique to compress C(X)s. 
Considering closed patterns only: 
A pattern is closed if it is more frequent than all of its 
supersets. If a pattern X1 is non-closed, then there exists 
another pattern X2 such that X1 ⊂ X2 and supp(X2) = 
supp(X1). 
Lemma 1: Given two patterns X1 and X2 such that X1 ⊆ X2 and 
supp(X1) = supp(X2), if X2 is ϵ -covered by a pattern X, then X1 
must be ϵ -covered by X too. It implies that instead of covering 
all frequent patterns, we can cover frequent closed patterns 
only, which leads to the following lemma. 
Lemma 2: Let F be the set of frequent patterns in a dataset D 
with respect to a threshold minsup. If a set of patterns R ϵ -
covers all the frequent closed patterns in F, then R ϵ -covers all 
the frequent patterns in F. 
Lemma 3: Given two patterns X1 and X2 such that X1 ⊆ X2 and 
supp(X1) = supp(X2), if a pattern X is ϵ-covered by X1, then X 
must be  ϵ -covered by X2 too. 
It suggests that we can use closed patterns only to cover all 
frequent patterns. The number of frequent closed patterns can 
be orders of magnitude smaller than the total number of 
frequent patterns. Considering only closed patterns improve 
the efficiency of the MinRPset algorithm in two aspects. First, 
it reduces the size of individual C(X)s since now they contain 
only frequent closed patterns. Second, it reduces the number of 
patterns whose C(X) needs to be generated as now we need to 
generate C(X)s for closed patterns only. The CFP-tree structure 
allows different patterns to share the storage of their prefixes 
as well as suffixes. Prefix sharing is easy to understand. Only 
the items after an entry E can appear in the subtree pointed by 
E, and these items are called candidate extensions of E. Suffix 
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sharing occurs when a candidate extension of an entry E 
occurs in the same set of transactions as the pattern 
represented by E. Let i be a candidate extension of E and X be a 
pattern represented by E. If supp(X) = supp(X ∪ {i}), then for 
any pattern Z, we must have supp(X ∪ Z) =supp(X ∪ {i} ∪ Z). In 
other words, X and X ∪ {i} have the same extensions. In CFP-
tree, a singleton node containing item i is created to enable the 
sharing between X and X ∪{i}. In the root node of Figure 1, item 
f is a candidate extension of item p. Every entry in a CFP-tree 
represents one or more patterns with the same support, and 
these patterns contain the items on the path from the root to 
the entry. Items contained in singleton nodes are optional. 
CFP-tree a very compact structure for storing frequent 
patterns. The number of entries in a CFP-tree is much smaller 
than the total number of patterns stored in the tree. The CFP-
tree structure has the following property. 
Property 1: In a multiple-entry node, the item of an entry E can 
appear in the subtrees pointed by entries before E, but it 
cannot appear in the subtrees pointed by entries after E. In a 
CFP-tree, the supersets of a pattern cannot appear on the right 
of the pattern. They appear either on the left of the pattern or 
in the subtree pointed by the pattern.  
 
4. Conclusion 
The notion of condensed representation has been identified as 
a core concept for inductive query optimization and its interest 
goes far beyond simple KDD processes based on itemsets. The 
existing algorithm first mines frequent Patterns and then find 
representative patterns in a post-processing step, Due to the 
use of the post-processing strategy, MinRPset  has the 
following additional benefits besides producing fewer 
representative patterns:1) The post-processing strategy allows 
users to try different ϵ values without mining frequent patterns 
multiple times. This is especially beneficial on very large 
datasets. 2) In MinRPset it is easy to keep record of the set of 
patterns covered by each representative pattern. This 
information is useful for users to inspect individual 
representative patterns in more details.3) We can relax the 
conditions on ϵ-covered to further reduce the number of 
representative patterns 
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